Satellite Altimetry and Gravimetry: Theory and Applications

C.K. Shum¹,², Alexander Bruan²,¹

¹,²Laboratory for Space Geodesy & Remote Sensing
²,¹Byrd Polar Research Center

The Ohio State University

Columbus, Ohio, USA

ckshum@osu.edu, braun.118@osu.edu
http://geodesy.eng.osu.edu

Norwegian Univ. of Science and Technology

Trondheim, Norway

21–25 June, 2004
Satellite Altimetry and Gravimetry: Theory and Applications

C.K. Shum & Alexander Braun, Ohio State University

Contributors:
K. Cheng, Shin-chan Han, Chung-yen Kuo, Yuchan Yi, Ohio State Univ.

Acknowledgements:
Brian Beckley, NASA/GSFC Altimeter Pathfinder Data Center
Jérôme Benveniste, Pierre Femenias, ESA/ESRIN
Dudley Chelton, Oregon State University
Don Chambers, John Ries, Bob Schutz, Byron Tapley, Univ. of Texas
Cheinway Hwang, National Chiao Tung University, Taiwan
John Lillibridge, NOAA/Lab. for Satellite Altimetry
Lee Fu, Margaret Srinivasan, Robert Benada, NASA/JPL
Philip Woodworth, Proudman Oceanographic Laboratory

*Last Lectures: Wuhan Altimetry Workshop, 2002; GLOSS Malaysia Workshop, 2004
Satellite Altimetry and Gravimetry: Theory and Applications

References:

ERS-1/-2 Special Issue, Jl of Geophysical Research, 1997.
McCarthy et al., GEODYN II System Description, Volume , NASA/GSFC, 1983.
Satellite Altimetry and Gravimetry: Theory and Applications

Monday, 21 June 2004

• Orbital Dynamics and Orbit Determinations I (AM) By C.K. Shum
 – Keplerian motion, general perturbation, Kaula’s formulations
 – Periodic variations and resonances due to geopotential

• Introduction to Satellite Altimetry I (PM) By Alexander Braun
 – What is altimetry?
 – Basic principles of satellite altimetry and its history
 – Interdisciplinary applications of altimetry

• Tutorial on iGMT – a graphics tool (PM) By Alexander Braun
Satellite Altimetry and Gravimetry: Theory and Applications

Tuesday, 22 June 2004

- Orbital Dynamics & Orbit Determinations II (AM) By C.K. Shum
 - Nonlinear orbit determination & parameter recovery
 - Force, measurement, and Earth orientation models

- Satellite Altimetry II (AM) By C.K. Shum
 - Principles of satellite altimetry, mission design, waveforms
 - Geographically correlated orbit errors and POD
 - Instrument, media and geophysical corrections

- Altimeter Collinear Analysis (PM) By Alexander Braun
 - Stackfile method for oceanography and marine geophysics
 - Mean sea surface, marine gravity field determinations
 - Models accuracy evaluations and limitations

- Radar Altimeter Data Processing (PM) By Alexander Braun

- Tutorial on iGMT (continued) (PM) By Alexander Braun
Satellite Altimetry and Gravimetry: Theory and Applications

Wednesday, 23 June 2004

- Space Geodesy: An Interdisciplinary Science (AM) C.K. Shum

- 20th Century Sea Level Rise (AM) C.K. Shum

- Determination of Vertical Motion Using Satellite Altimetry and Tide Gauges (PM) Alexander Braun
Satellite Altimetry and Gravimetry: Theory and Applications

Thursday, 24 June 2004

• Ocean Tides from Satellite Altimetry
 (AM) C.K. Shum

• Temporal Gravity Field Observations with GRACE
 (AM) C.K. Shum
Satellite Altimetry and Gravimetry: Theory and Applications

Friday, 25 June 2004

- IceSat Research and Applications (PM) Alexander Braun
- Projects, future work discussions, All
- Evaluations and Critiques of the course, All
Satellite Altimetry and Gravimetry: Theory and Applications

• **Themes:**
 - Orbital dynamics and orbit determination
 - Instrument error budget and analysis
 - Geophysical inverse program
 - Interdisciplinary applications

• **Basic knowledge**
 - Orbital mechanics, dynamics, physical and satellite geodesy
 - Mathematical tools (linear algebra, statistics, numerical analysis, differential equations, approximate theory, adjustment)
 - Physics, astronomy, engineering
 - Instrument and their principles (radar, optical, electromagnetics)
 - Geophysics, oceanography, atmosphere, hydrology, glaciology